

The role of oxidative stress, endothelial dysfunction and cardiometabolic risk in the pathophysiology of preeclampsia in women: review of the literature

Ebenezer Ackah¹, Chuma Mabuto¹, Benedicta Nkeh-Chungag², Constance Sewani-Rusike¹, Charles Businge³, Nontsikelelo Gubu-Ntaba³, Nandipha Sotobe-Mbane⁴

ABSTRACT

Background

Preeclampsia (PE) complicates up to 10% of pregnancies worldwide (Nirupama et al., 2021). Foetal and maternal deaths associated with preeclampsia are highest in women who are of Hispanic and African descent (Karrar and Hong., 2022). Women with PE are at an increased risk of developing cardiovascular diseases and complications later in life (de Havenon et al., 2021; Hod et al., 2015). This study sought to review the existing literature that combined the highlighted gap in the pathophysiology of preeclampsia with a focus on maternal cardiovascular health.

Objectives

- *To investigate the discrepancy between normal placentation and placentation in preeclampsia destined pregnancies.
- *To investigate the precursors of maternal endothelial dysfunction in preeclamptic pregnancies.
- *To investigate cardiometabolic risk and its impact on maternal vascular health.

Methods

Meticulous identification of relevant studies via a predefined search strategy applied to electronic databases like Medline/PubMed, Excerpta Medica Database (Embase), Web of Science, Scopus, Cochrane Library, and African Journals Online. Additionally, a manual search was conducted.

Conclusion

Endothelial dysfunction is a hallmark of preeclampsia. Retinal arterial narrowing is strongly associated with hypertension. This association is observed even in cases of preeclampsia. Retinal imaging allows for a non-invasive measurement of the development of cardiovascular disorders (Giarratano et al., 2024). There are a few studies that look into the microvascular status in pregnant women and even fewer studies that have done so in relation to cardiometabolic risk in South Africa

GJMEDPH 2025; Vol. 14, issue 5 | OPEN ACCESS

1*Corresponding author: Ebenezer Ackah, Chuma Mabuto, Constance Sewani-Rusike, Department of Human Biology, Walter Sisulu University, Nelson Mandela Drive, Mthatha, South Africa; 2. Benedicta Nkeh- Chungag, Department of Biological and Environmental Sciences, Walter Sisulu University, Mthatha, South Africa; 3. Charles Businge, Nontsikelelo Gubu-Ntaba, Department of Obstetrics and Gynaecology, Nelson Mandela Academic Hospital, Mthatha, South Africa; 4. Nandipha Sotobe-Mbane, Department of Paediatrics and Neonatology, Nelson Mandela Academic Hospital, Mthatha, South Africa.

Conflict of Interest—none | Funding—none

© 2025 The Authors | Open Access article under CC BY-NC-ND 4.0

INTRODUCTION

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder that is diagnosed as the onset of hypertension (Blood pressure $\geq 140/90$ mmHg) with proteinuria at or after 20 weeks of gestation (Bergman et al., 2023). The risk factors reported to precede the development of PE include hypertension, obesity, kidney disease, oxidative stress and diabetes (Perišić et al., 2022). Preeclampsia complicates up to 10% of pregnancies worldwide (Nirupama et al., 2021). It is responsible for more than 500,000 foetal deaths and 50,000 maternal deaths worldwide, with 26% of the reported cases being patients of African and Hispanic descent, outlining these ethnic groups as the most at risk for developing PE (Karrar and Hong., 2022). In South Africa, hypertensive disorders of pregnancy (HDP) account for 18% of all maternal deaths and are the most prevalent direct cause of maternal mortality (Moodley et al., 2019). According to a one-year prospective study in the Western Cape Province of South Africa, 17.7% of women with PE gave birth to stillborn babies (Nathan et al., 2018). A triennial report of the National Committee for Confidential Enquiry into Maternal Deaths (NCCEMD) in South Africa, noted that PE was linked to the maternal deaths of over 50% of hypertensive pregnancies (Moodley and Ngene, 2016). It is reported that women with complications associated with hypertension during pregnancy are at a greater risk of developing cardiovascular diseases (CVDs) after pregnancy (Melchiorre et al., 2020, Tooher et al., 2017). Although, there are differing studies that attempt to outline the pathophysiology of PE, there is a consensus that the placenta plays a critical role. Special cells known as cytotrophoblasts, produced by the developing placenta, invade the uterine wall to widen the spiral arteries in order to increase perfusion to the placenta (Spradley et al., 2015). However, in PE these cytotrophoblasts fail to adequately invade the uterine walls or fail to modify the spiral arteries, leading to a hypoxic placental environment and ultimately an ischemic placenta. The ischemic placenta releases anti-angiogenic factors, inflammatory factors and factors leading to reduced expression of proangiogenic factors into the maternal circulation (Brennan et al., 2014). These

factors cause endothelial dysfunction leading to hypertension in the mother (Spradley et al., 2015). Endothelial dysfunction is a hallmark feature of preeclampsia and is characterized by impaired vascular relaxation, increased vascular tone, and decreased vasodilatory capacity (Boeldt and Bird, 2017). This dysfunction is thought to arise from various factors, including oxidative stress, inflammation, and placental ischemia, all of which can lead to reduced production of nitric oxide (NO) (Possomato-Vieira and Khalil., 2016). In preeclampsia, the reduced bioavailability of NO leads to vasoconstriction and increased peripheral resistance, contributing to the development of hypertension and other complications of the disease (Tashie et al., 2020; Bueno-Pereira et al., 2022). Additionally, the reduced NO production and increased levels of reactive oxygen species (ROS) can lead to endothelial damage and dysfunction, further exacerbating the disease (Bueno-Pereira et al., 2022). Oxidative stress is defined as an imbalance between reactive oxygen species (ROS) production and antioxidant defence mechanisms (Toboła-Wróbel et al., 2020). Reactive oxygen species (ROS) are highly reactive molecules that are produced naturally during normal metabolic processes within cells. ROS include free radicals such as superoxide anion (O_2^-) (Fisher et al., 2020). Under normal physiological conditions, ROS are produced in low to moderate quantities and facilitate normal endothelial cell signalling and vascular function (Redza-Dutordoir and Averill-Bates., 2016). However, excessive production of ROS, as in cases of oxidative stress, can lead to endothelial dysfunction by the impairment of nitric oxide (NO) signalling and promoting vascular inflammation and cell apoptosis. This can lead to reduced vasodilation, increased vascular tone, and increased permeability of blood vessels, ultimately contributing to the development of hypertension and other cardiovascular related complications such as PE (Shaito et al., 2022). The ischaemic placenta, found in cases of PE, induces maternal oxidative stress by producing excessive ROS, which in turn leads to endothelial dysfunction and ultimately, PE (Sánchez-Aranguren et al., 2014). Malondialdehyde (MDA) is a byproduct of lipid peroxidation and is a reliable marker for oxidative

stress (Bassu et al., 2020). Research suggests that MDA may not only serve as a marker of oxidative stress but also contribute to the pathogenesis of PE. MDA can induce apoptosis and inflammation in endothelial cells, disrupt nitric oxide signaling, and impair vascular function, all of which are key features of PE (Asiltas et al., 2018; D'Souza et al., 2016). Studies have outlined MDA levels to have been significantly increased in women with PE (Khadir et al., 2022; Tenório et al., 2019). According to a study conducted in southern Spain involving 4711 cases, obesity showed a strong association with the development of PE and other hypertensive disorders of pregnancy. Additionally, dyslipidaemia in the form of high levels of triglycerides, high levels of low density lipoprotein and low levels of high density lipoprotein have been associated with PE (Fernández et al., 2018, Mousa et al., 2018).

Under physiological conditions, the micro-vascular environment is protected from high blood pressures by the macro-vasculature. However, in pathological conditions, such as hypertension, the microvasculature is exposed to high pressured blood (Climie et al., 2019a). This leads to vascular damage in the form of arterial stiffening and overall increase in peripheral vascular resistance which leads to an increase in systemic blood pressure (Climie et al., 2019b). Studies have shown that in pregnancy, pathological changes in microvasculature are strongly associated with endothelial dysfunction and other cardiovascular disorders (Garcia-Ortiz et al., 2011, Giarratano et al., 2024).

Understanding the mechanisms underlying endothelial dysfunction and its contribution to the pathophysiology of PE is crucial given the adverse maternal and foetal outcomes associated with the disease. Involving the study of microvasculature may also assist in determining the severity of endothelial dysfunction, aiding in understating the progression of preeclampsia. Studies in this vein may be a step towards developing effective preventive and therapeutic strategies for this devastating disorder. The pathophysiology of preeclampsia, as well as the factors that predispose women to the disorder, are still under critical investigation. This review is an expansion on what is currently known and what remains to be understood about the development of preeclampsia and the

Review Articles
influence of various factors on its progression.

Methods

We meticulously identified relevant studies via a predefined search strategy applied to electronic databases like Medline/PubMed, Excerpta Medica Database (Embase), Web of Science, Scopus, Cochrane Library, and African Journals Online. Additionally, a manual search was also conducted to collect the relevant literature.

Epidemiology of Pre-eclampsia

Preeclampsia (PE), a complication during pregnancy, is a leading cause of illness and death among both mothers and their offspring worldwide (Boldeanu et al., 2023). Clinically, PE is diagnosed as the presence of hypertension ($BP > 140/90$) coupled with proteinuria and end-organ damage such as kidney and liver failure that begins to manifest at or after 20 weeks of gestation (AlSubai et al., 2023). It occurs in 2 to 8% of pregnancies globally (Boldeanu et al., 2023). The occurrence of PE differs across Africa, with incidence ranging from 1.8% to 16.7%. In Sub-Saharan Africa, the incidence of preeclampsia has been reported to be 13% (Jikamo et al., 2023). In South Africa, the prevalence of PE is reported to occur in 5 to 8% of pregnancies. Ethnicity has been outlined as a risk factor for PE, and women of African ethnicity have been seen to be at higher risk of developing PE (Karrar and Hong, 2022). Debates on the exact cause of PE are ever-growing; however, a pathological change in the normal placentation process has been universally accepted as one of the key events leading to the incidence of PE (Chatzakis et al., 2023; Gibbs et al., 2023; MO et al., 2023).

Normal placentation

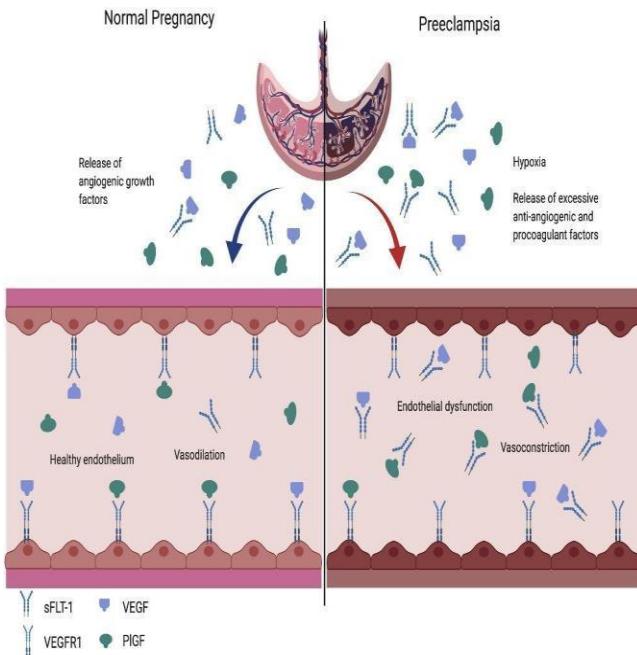
The placenta is an organ formed during the first three months of pregnancy. It is an essential part of pregnancy that ensures the baby's proper development (Turco and Moffett., 2019). Major and crucial placental development occurs during the first 12 weeks, known as the first trimester of pregnancy (Burton and Jauniaux., 2018). The placenta's development stems from the blastocyst's external layer, termed the trophoblast (TE). The TE fuses, resulting in the formation of a syncytium. After implantation, the syncytium rapidly invades the endometrium, now termed the decidua (Turco

and Moffett., 2019). Part of this invasion includes the erosion of the glands in the decidua, which causes the decidual secretions to bathe the syncytium. These secretions promote cytrophoblast proliferation into the syncytiotrophoblast (Herrick and Bordoni., 2020). Continued proliferation results in the formation of villous trees. The cytrophoblast breaks through, forming a cytrophoblast shell (CS) that lies between the blastocyst and the decidua. Singular cytrophoblast cells, termed extravillous trophoblast (EVT), begin to depart the CS and invade the decidua, forming the structural plan for the placenta. The EVT invasion is via two methods: invasion as interstitial EVT (iEVT) and invasion as endovascular EVT (eEVT) (Turco and Moffett, 2019). The eEVT travel within the spiral arteries that supply the uterus, forming plugs that effectively reduce maternal blood flow to the placenta. This allows for the uninterrupted invasion of the eEVT into the endothelial cell layer of the spiral arteries (Bulmer et al., 2020). At this level, the eEVT replaces the smooth muscle cells, ultimately modifying the structures of the vessels. The iEVT travel through the uterine stroma adjacent to the spiral arteries. The iEVT erodes the actin filaments of the arteries' smooth muscles, replacing them with other materials that impede vasoactivity while modulating immune interactions (Zhang et al., 2023). The combined action of the iEVTS and the eEVTS leads to spiral artery remodelling to serve as a low-pressure, high-volume conducting vessel for the foetus (Turco and Moffett, 2019). As pregnancy progresses, the plugs formed by the eEVT dissipate and the spiral arteries can now transport the increased maternal blood, via the placental membrane, to the foetus, providing it with nutrients and oxygen (Herrick and Bordoni., 2020).

Blood volume and pressure regulation in normal pregnancy

Blood pressure can be described as the force the circulating blood exerts on the arterial walls. It is divided into systolic and diastolic pressure, which describe the pressure while the heart is contracting and when it is relaxing, respectively (Das, 2019). During pregnancy, the mother undergoes physiological and anatomical changes that allow her to accommodate and care for the foetus forming in the uterus (Soma-Pillay et al., 2016). There are

significant hemodynamic and cardiovascular changes that occur, namely, an increase in blood volume of up to 45%, an increase in cardiac output up to 50%, and a decrease in blood pressure during the first and second trimesters (Soma-Pillay et al., 2016). Other adaptations include the formation of new blood vessels to support the additional cardiac output. Vasodilation is the hallmark of these changes and is mediated mainly by the potent vasodilator, NO (Soma-Pillay et al., 2016).


Pathophysiology of Preeclampsia

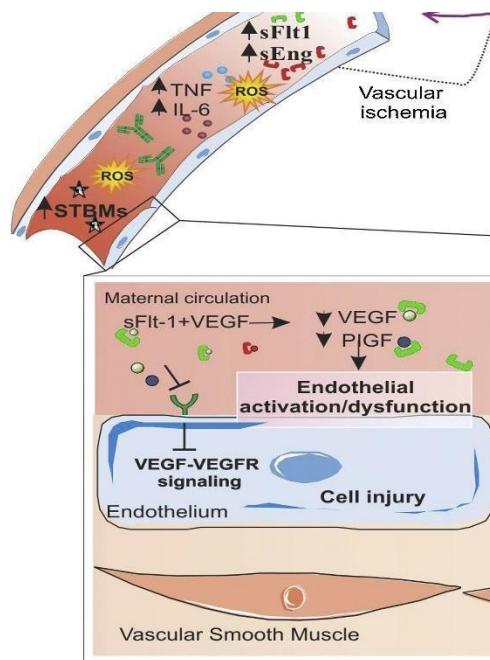
The pathophysiology of preeclampsia is characterised by abnormal placentation, abnormal spiral artery remodelling, placental insufficiency, and endothelial dysfunction (Nirupama et al., 2021). Abnormal placentation has been highlighted as a key instigator in the pathophysiology of preeclampsia. Abnormal placentation occurs when the cytrophoblast cells of the placenta fail to adequately remodel the maternal spiral arteries (Rana et al., 2019). Abnormal spiral artery remodelling leads to reduced perfusion to the placenta (placental ischemia). Persistent placental ischemia causes the placenta to enter a state of hypoxia (Viana-Mattioli et al., 2023). The ischemic placenta contributes to the development of preeclampsia by releasing three kinds of factors, namely, antiangiogenic factors, inflammatory cytokines, and oxidative stress markers, into the maternal circulation (Hariharan et al., 2017). These factors produced by the placenta in response to ischemia cause endothelial dysfunction in the maternal circulation, which is linked to hypertension and proteinuria, both of which are clinical signs of preeclampsia (Apicella et al., 2019).

Antiangiogenic factors and endothelial dysfunction

As the placenta develops, it produces factors and hormones that promote changes in blood volume and pressure during normal pregnancy. Vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) are proteins produced by the placenta that stimulate angiogenesis and modify the maternal systemic vasculature (Brennan et al., 2014). This is achieved by binding these proteins to the VEGF receptor 2 (VEGFR 2) located on the maternal endothelial cells, transducing a signalling

pathway via mediators such as phosphatidylinositol-3 kinase (PI3k). This results in the formation of new blood vessels, lowering the blood pressure by decreasing systemic vascular resistance (SVR) (Padley et al., 2018). However, in preeclampsia, the hypoxic placenta releases antiangiogenic factors such as soluble fms-like tyrosine kinase 1 (sFlt-1) into maternal circulation (Flint et al., 2019). The sFlt-1

Figure 1.1a (left): A contrast of the pro-angiogenic and anti-angiogenic factors imbalance in normal and preeclamptic pregnancies. Emphasising the decreased bioavailability of VEGF due to circulating sFLT-1. **Figure 1.1b (right):** Endothelial cell injury due to decreased VEGF-VEGFR signalling. VEGF: Vascular Endothelial Growth Factor. PIGF: Placental Growth Factor. sFLT-1: Soluble fms-like tyrosine kinase 1. VEGFR1: Vascular Endothelial Growth Factor Receptor 1 (Rana et al., 2022; Sani et al., 2019).


Oxidative stress and Preeclampsia

During normal pregnancy, there is a steady rise in the presence of circulating reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. These are products of physiological processes within cells, and in pregnancy, ROS are mainly regulated by the developing placenta (Chiarello et al., 2020). However, as evident in cases of preeclampsia, the production of ROS goes unchecked and increases to levels that the mother's body cannot overcome with antioxidants, resulting in oxidative stress (Guerby et al., 2021). Lipid peroxidation occurs due to

Review Articles

binds to circulating VEGF and PIGF, inhibiting their interaction with their receptors, causing a reduction in VEGF and PIGF signalling (Kara et al., 2021; Akasaki, 2024) (Figure 1a). This effectively disrupts VEGFR and PIGF signalling, leading to endothelial activation, cell injury and ultimately endothelial dysfunction (Sani et al., 2019) (Figure 1b).

Figure 1.1a

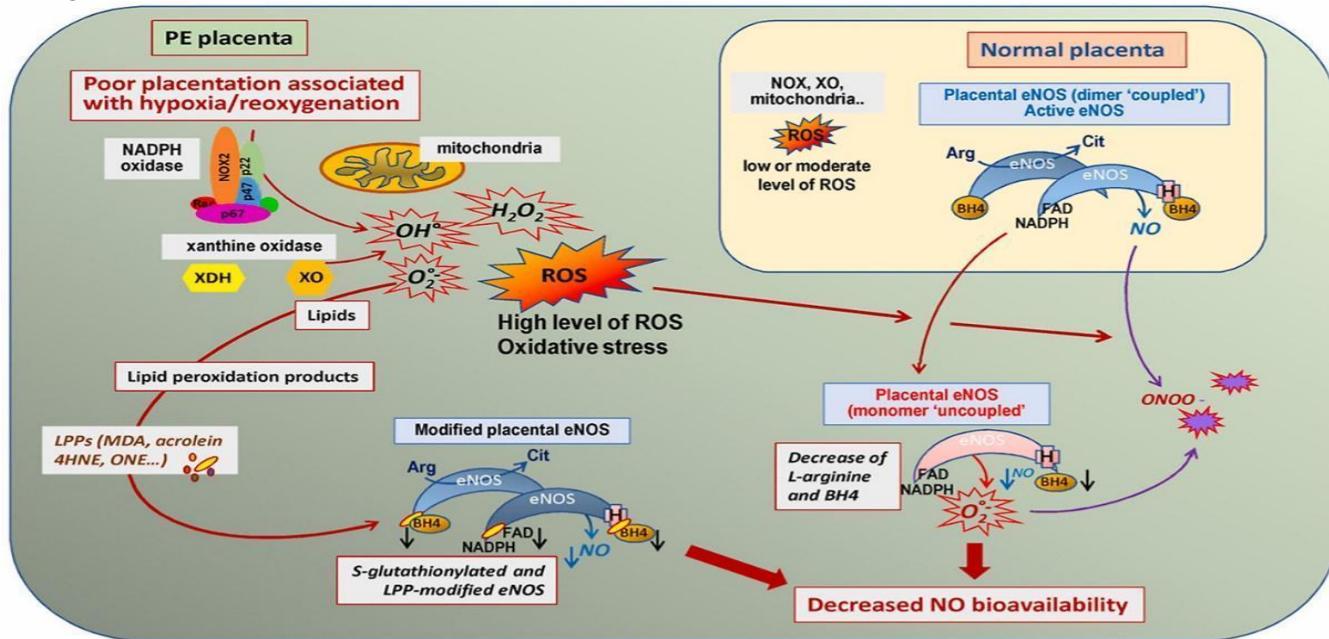


Figure 1.1b

interactions between ROS and the lipid bilayer of cell membranes (Juan et al., 2021). The oxidative stress observed in preeclampsia leads to increased lipid peroxidation, resulting in local tissue damage. Endothelial nitric oxide synthase (eNOS) is an enzyme that, in conjunction with its cofactor, tetrahydrobiopterin (BH4), produces nitric oxide (NO) in the maternal endothelium and placenta (Perez de la Lastra et al., 2022). Nitric oxide is a regulator of endothelial health, maintaining the endothelium's anatomical and physiological state (Vanhoutte, 2018). The presence of ROS results in

endothelial dysfunction mainly via two pathways. The first pathway involves the uncoupling of the eNOS by inhibiting BH4, through the binding of superoxide to BH4, causing the eNOS to produce superoxide instead of NO (Vanhoutte, 2018). Secondly, superoxide readily binds to available NO to form peroxynitrite, which also falls under the family of ROS, further inducing oxidative stress (Wang et al., 2021). The decreased bioavailability

and bio-production of NO leads to endothelial dysfunction, and in pregnancy may lead to preeclampsia (Meister and Feresin, 2023) (Figure 2). The base guanine in DNA is the most susceptible to being oxidised, and as a result, formations of 8-oxo-7,8-dihydroguanine (8-oxodG) and 8-hydroxyguanine (8-OHdG) are abundant in cases of oxidative stress. Due to this reason, 8-OHdG is a marker of oxidative stress (Halczuk et al., 2020).

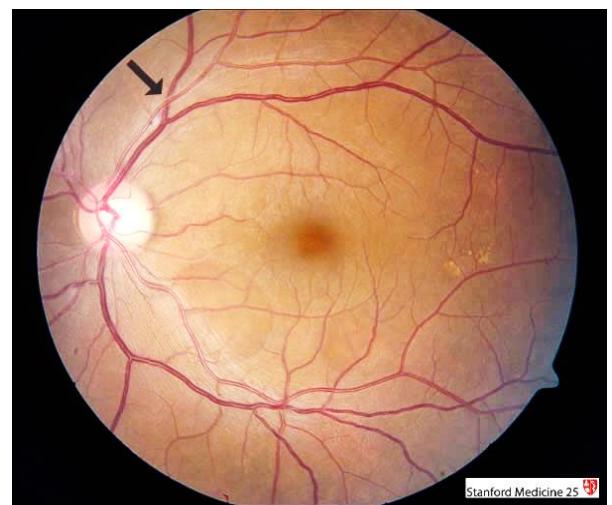
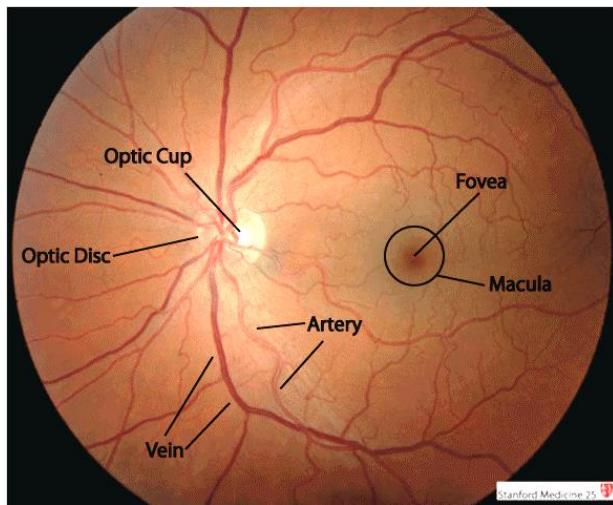
Figure 2.2: Role of oxidative stress and lipid peroxidation in decreased Nitric Oxide production in Preeclampsia (Guerby et al., 2016).

Macro-vascular Function and Cardiovascular Health

Arterial stiffness describes the anatomical characteristic of arterial walls and their functional ability to distend and contract as a response to changes in blood pressure. Arterial stiffness, therefore, has an observable impact on blood pressure and general haemodynamics and is a cardiovascular disease risk factor (Townsend et al., 2015; Hofmann et al., 2014). Pulse Wave Velocity (PWV) quantifies the speed at which arterial pulses move through the arterial network, with a greater PWV signifying increased arterial stiffness (Wu et al., 2019). Carotid femoral Pulse wave velocity (cfPWV) is accepted as the gold standard for assessing central arterial stiffness (Phan et al., 2021). The clinical cutoff point for normal cfPWV is 10 m/s. Readings above this value indicate increased arterial stiffness and cardiovascular disease risk (Ceponiene et al.,

2014; Van Bortel et al., 2012). Flow-mediated slowing (FMS) is a method used to measure the minimum PWV during reactive hyperaemia (Basgaran et al., 2016). Flow-mediated slowing is used to assess endothelial function, with increased measurement indicating increased endothelial function (Stoner et al., 2020). The clinical cut-off point for a normal FMS reading is 11.3%. An FMS reading of less than 11.3% has been associated with poor endothelial function and preeclampsia (Shechter et al., 2014; Lößner et al., 2023). Peripheral artery disease is associated with increased cardiovascular risk. Ankle Brachial Index (ABI) is a non-invasive screening tool for peripheral artery disease (Aboyans, 2012). ABI is calculated by dividing the ankle level systolic pressure by the brachial systolic pressure (Aerden et al., 2011). Cut-off points for normal ABI are 0.9-1.4, with values lower than 0.9 indicating the presence of peripheral

disease (Marius et al., 2014).



Asymmetric dimethylarginine (ADMA) is a naturally occurring metabolite in the human body. ADMA competes with the nitric oxide synthase (NOS) substrate, L-arginine, binding to the enzyme, NOS, effectively inhibiting the biosynthesis of NO (Guo et al., 2023). A pathological increase in serum levels of ADMA leads to a greater inhibition of NOS (Selanno et al., 2020). ADMA has been observed as a marker of endothelial dysfunction and a strong indicator of cardiovascular disease dysfunction (Doğan et al., 2018; Espinoza et al., 2019).

Retinal Microvasculature and Cardiovascular Health

Microvasculature, which constitutes small arteries (lumen<300 μ m in diameter) and arterioles (lumen<100 μ m in diameter), make up 45%-50% of total peripheral resistance in systemic vascular circulation (Laurent et al., 2019). The inversely proportional relationship between arteriolar lumen diameter (four times) and vascular resistance means that a slight alteration in arteriolar diameters significantly changes vascular resistance (Rizzoni et al., 2023). Pregnancy results in physiological stress that affects every organ system, including the visual system (Kalogeropoulos et al., 2019). Retinal

Review Articles

microcirculation refers to blood flow through the network of blood vessels within the retina. Retinal vasculature offers the only non-invasive method for observing microcirculation in the human body. (Naegele et al., 2018). Pathological changes within the retinal microvasculature may manifest as a result of newly developed disorders in pregnancy, such as preeclampsia (Qin, 2020). Retinal vessel calibres have been used to assess cardiovascular risk, with narrower arterioles, wider venules and a decreased arteriolar-venular ratio being associated with increased incidents of stroke and coronary heart disease (von Hanno et al., 2014; Chandra et al., 2019). Changes in retinal vessel diameters have been shown to predict cardiovascular disease risk (Drobnjak et al., 2016). Modifications of the retinal microvasculature in Preeclampsia - provoked retinopathy are similar to those observed in hypertensive retinopathy (Ciloglu et al., 2019). Reported changes include the narrowing of retinal arteries as well as abnormal vessel crossing (Modi and Arsiwalla, 2023). Optical coherence tomography angiography (OCTA) is an imaging technique that offers a non-invasive method to evaluate changes within the retinal microvasculature, such as vessel nicking or abnormal vessel crossing (Kızıltunç et al., 2020) (Figure 3b).

Figure 1.3a: Fundus picture of a left eye, demonstrating normal vasculature (Arteries and veins) (left image). **Figure 1.3b shows an abnormal vessel crossing (black arrow) observed in patients with systemic hypertension** (right image). Images captured using OCTA (Stanford Medicine, 2019).

Cardiometabolic Risk and Vascular Health

Women with preeclampsia are at an increased risk of developing cardiovascular diseases postpartum (Thilaganathan and Kalafat, 2019). Cardiometabolic risk is described by a collection of factors that increase an individual's risk for experiencing cardiovascular diseases (Mezhal et al., 2023). These factors include: elevated blood pressure, triglycerides, total cholesterol, blood glucose, glycated haemoglobin, lowered high-density lipoprotein (HDL-C) and obesity (Despres et al., 2008; Lancellotti, 2023). Hyperlipidaemia is a physiological occurrence during normal pregnancy. It is attributed to the growing baby's increasing demands for nutrients; however, in normal pregnancies, the lipid changes are under hormonal control. This is not the case in preeclamptic pregnancies, as changes in lipid circulation have been observed to be exaggerated (Mousa et al., 2018; Khoury et al., 2009). The increased lipid circulation leads to a build-up of lipid deposits on the arterial walls, triggering an immune response which leads to a build-up of oxidative stress and ultimately endothelial dysfunction (Hadden and McLaughlin, 2009). Therefore, studying the cardiometabolic health status of this high-risk population may be paramount and will assist in understanding the factors that contribute to the adverse cardiovascular events associated with preeclampsia.

Conclusion

Preeclampsia remains a complex and multifactorial disorder with profound implications for maternal and foetal health. The current literature reviewed underscored the central role of abnormal placentation and placental ischemia in initiating a cascade of pathological events — including angiogenic imbalance, oxidative stress and endothelial dysfunction, that all together make up the clinical manifestations of preeclampsia. Elevated levels of antiangiogenic factors such as soluble fms-like tyrosine kinase-1 (sFlt-1), coupled with reduced bioavailability of nitric oxide and increased reactive oxygen species, contribute to vascular injury and impaired hemodynamic regulation. Furthermore, the interplay between microvascular and macrovascular dysfunction, as well as emerging evidence on retinal microvasculature and cardiometabolic risk, highlights the systemic nature of the disease and its long-term cardiovascular consequences. Given the disproportionate burden of preeclampsia among women of African descent and the growing recognition of its intergenerational impact, future research must prioritize precision-based interventions and early diagnostic strategies that integrate molecular, vascular, and metabolic biomarkers. Advancing our understanding of these mechanisms is essential for developing targeted therapies and improving outcomes for high-risk populations.

Abbreviations

8-OHdG- 8-hydroxyguanine
8-oxodG- 8-oxo-7,8-dihydroguanine
ABI- Ankle Brachial Index
ADMA- Asymmetric dimethylarginine
BH4- Tetrahydrobiopterin
cfPWV- Carotid femoral Pulse wave velocity
CS- cytotrophoblast shell
CVD- Cardiovascular disease
eEVT endovascular extravillous trophoblast
eNOS- Endothelial nitric oxide synthase
EVT- extravillous trophoblast
FMS- Flow-mediated slowing
HDL-C- high-density lipoprotein
HDP-hypertensive disorders of pregnancy

iEVT- interstitial extravillous trophoblast

NCCEMD- National Committee for Confidential Enquiry into Maternal Deaths

NO-Nitric oxide

NOS- Nitric oxide synthase

OCTA- Optical coherence tomography angiography

PE- Preeclampsia

PI3k- phosphatidylinositol-3 kinase

PIGF- Placental Growth Factor

PWV- Pulse Wave Velocity

ROS- Reactive oxygen species

sFLT-1- Soluble fms-like tyrosine kinase 1.

SVR- Systemic vascular resistance

TE- trophectoderm

VEGF- Vascular Endothelial Growth Factor

VEGFR1- Vascular Endothelial Growth Factor Receptor 1

VEGFR2- Vascular Endothelial Growth Factor Receptor 2

REFERENCES

1. Aboyans, V., Criqui, M.H., Abraham, P., Allison, M.A., Creager, M.A., Diehm, C., Fowkes, F.G.R., Hiatt, W.R., Jönsson, B., Lacroix, P. and Marin, B., 2012. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. *Circulation*, 126(24), pp.2890-2909.
2. Aerden, D., Massaad, D., von Kemp, K., van Tussenbroek, F., Debing, E., Keymeulen, B. and Van den Brande, P., 2011. The ankle-brachial index and the diabetic foot: a troublesome marriage. *Annals of vascular surgery*, 25(6), pp.770-777.
3. Akasaki, Y., 2024. Angiogenic factors for early prediction of preeclampsia. *Hypertension Research*, 47(10), pp.2959-2960.
4. Akhter, T., Wikström, G., Larsson, M., Bondesson, U., Hedeland, M. and Naessen, T., 2021. Dimethylarginines correlate to common carotid artery wall layer dimensions and cardiovascular risk factors in pregnant women with/without preeclampsia: A group comparative study. *European Journal of Obstetrics & Gynecology and Reproductive Biology*, 258, pp.288-293.
5. Alhajj, M., Zubair, M. and Farhana, A., 2023. Enzyme linked immunosorbent assay. StatPearls Treasure Island (FL): StatPearls Publishing. Available at: <http://www.ncbi.nlm.nih.gov/books/NBK555922/> (Accessed: 28 June 2024).
6. AlSubai, A., Baqai, M.H., Agha, H., Shankarlal, N., Javaid, S.S., Jesrani, E.K., Golani, S., Akram, A., Qureshi, F., Ahmed, S. and Saran, S., 2023. Vitamin D and preeclampsia: A systematic review and meta-analysis. *SAGE Open Medicine*, 11, p.20503121231212093.
7. Apicella, C., Ruano, C.S., Méhats, C., Miralles, F. and Vaiman, D., 2019. The role of epigenetics in placental development and the etiology of preeclampsia. *International journal of molecular sciences*, 20(11), p.2837.
8. Asiltas, B., Surmen-Gur, E. and Uncu, G., 2018. Prediction of first-trimester preeclampsia: Relevance of the oxidative stress marker MDA in a combination model with PP-13, PAPP-A and beta-HCG. *Pathophysiology*, 25(2), pp.131-135. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK551634/> (Accessed: 16 June 2024).
9. Basgaran, A., Maki-Petaja, K., Wilkinson, I. and McEniery, C., 2016. 9.9 Flow-Mediated slowing as a novel method for the non-invasive assessment of endothelial function. *Artery Research*, 16(2), pp.70-70.
10. Bassu, S., Zinelli, A., Sotgia, S., Mangoni, A.A., Floris, A., Farina, G., Passiu, G., Carru, C. and Erre, G.L., 2020. Oxidative stress biomarkers and peripheral endothelial dysfunction in rheumatoid arthritis: a monocentric cross-sectional case-control study. *Molecules*, 25(17), p.3855.
11. Bergman, K., Svanvik, T., Basic, C., Rosengren, A., Zverkova Sandstrom, T., Celind, J., Wikstrom, A.K., Schaufelberger, M. and Thunstrom, E., 2023. Cardiovascular impact on risk of preeclampsia,-an epidemiologic cohort study. *European Heart Journal*, 44(Supplement_2), pp.ehad655-2727.
12. Boeldt, D.S. and Bird, I.M., 2017. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. *The Journal of endocrinology*, 232(1), p.R27.
13. Boldeanu, L., Văduva, C.C., Caragea, D.C., Novac, M.B., Manasia, M., Siloş, I., Manolea, M.M., Boldeanu, M.V. and Dijmărescu, A.L., 2023. Association between Serum 8-Iso-Prostaglandin F_{2α} as an Oxidative Stress Marker and Immunological Markers in a Cohort of Preeclampsia Patients. *Life*, 13(12), p.2242.
14. Brennan, L.J., Morton, J.S. and Davidge, S.T., 2014. Vascular dysfunction in preeclampsia. *Microcirculation*, 21(1), pp.4-14.
15. Bueno-Pereira, T.O., Bertozzi-Matheus, M., Zampieri, G.M., Abbaide, J.F., Cavalli, R.C., Nunes, P.R. and Sandrim, V.C., 2022. Markers of endothelial dysfunction are attenuated by resveratrol in preeclampsia. *Antioxidants*, 11(11), p.2111.
16. Bulmer, J.N., Innes, B.A., Robson, S.C. and Lash, G.E., 2020. Transient loss of endothelial cells in human spiral artery remodelling during early pregnancy: Challenging the dogma. *Placenta*, 101, pp.230-233.
17. Burton, G.J. and Jauniaux, E., 2018. Development of the human placenta and fetal heart: synergic or independent? *Frontiers in physiology*, 9, pp1-10.
18. Caraiola, S., Jurcut, C., Dima, A., Jurcut, R., Baicus, C. and Baicus, A., 2019. Impaired ankle-brachial index in antiphospholipid syndrome: Beyond the traditional risk factors. *Journal of Clinical Laboratory Analysis*, 33(1), p.e22617.
19. Ceponiene, I., Tamulevičiute-Prasciūne, E., Slapikas, R., Petkevičiūne, J. and Klumbiūne, J., 2014. P4. 10 Pulse Wave Velocity Under The Cut-Off Value of 10 M/S and Aortic Augmentation Index Corrected to Heart Rate May Signal Higher Early CVD Risk in Middle-Aged Men. *Artery Research*, 8(4), pp.141-141.
20. Chatzakis, C., Eleftheriades, M., Demertzidou, E., Eleftheriades, A., Koletsos, N., Lavasidis, L., Zikopoulos, A., Dinas, K. and Sotiriadis, A., 2023. Uterine Arteries Resistance in Pregnant Women with Gestational Diabetes Mellitus, Diabetes Mellitus Type 1, Diabetes Mellitus Type 2, and Uncomplicated Pregnancies. *Biomedicines*, 11(12), p.3106.
21. Chiarello, D.I., Abad, C., Rojas, D., Toledo, F., Vázquez, C.M., Mate, A., Sobrevia, L. and Marín, R., 2020. Oxidative stress: Normal pregnancy versus preeclampsia. *Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease*, 1866(2), p.165354.
22. Ciloglu, E., Okcu, N. T. & Dogan, N. Ç. 2019. Optical coherence tomography angiography findings in preeclampsia. *Eye*, 33, 1946-1951.
23. Climie, R. E., Gallo, A., Picone, D. S., Di Lascio, N., Van Sloten, T. T., Guala, A., Mayer, C. C., Hametner, B. & Bruno, R. M. 2019a. Measuring the interaction between the macro-and micro-vasculature. *Frontiers in cardiovascular medicine*, 6, p.169.
24. Climie, R. E., Van Sloten, T. T., Bruno, R.-M., Taddei, S., Empana, J.-P., Stehouwer, C. D., Sharman, J. E., Boutouyrie, P. & Laurent, S. 2019b. Macrovasculature and microvasculature at the crossroads between type 2 diabetes mellitus and hypertension. *Hypertension*, 73, 1138-1149.

Ebenezer Ackah et al.

25. Cuzzo, B. and Lappin, S.L., 2019. Vasopressin (antidiuretic hormone, ADH). In StatPearls [Internet]. StatPearls Publishing. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK526069/> (Accessed: 24 June 2024).

26. D'Souza, V., Rani, A., Patil, V., Pisal, H., Randhir, K., Mehendale, S., Wagh, G., Gupte, S. and Joshi, S., 2016. Increased oxidative stress from early pregnancy in women who develop preeclampsia. *Clinical and experimental hypertension*, 38(2), pp.225-232.

27. Das, R.N. and Lee, Y., 2019. Effects of Hematocrit on Cardiac Parameters for Shock Patients. *Clin Med Rev Case Rep*, 5, p.252.

28. de Havenon, A., Delic, A., Stulberg, E., Sheibani, N., Stoddard, G., Hanson, H. and Theilen, L., 2021. Association of preeclampsia with incident stroke in later life among women in the Framingham Heart Study. *JAMA Network Open*, 4(4), pp.e215077-e215077.

29. Delong, C. and Sharma, S., 2019. Physiology, Peripheral Vascular Resistance. Available from: <https://europepmc.org/article/NBK/NBK538308/> (Accessed 28 June 2024).

30. DeMers, D. and Wachs, D., 2020. Physiology, mean arterial pressure. In StatPearls [Internet]. StatPearls Publishing. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK538226/> (Accessed 28 June 2024).

31. Despres, J.P., Poirier, P., Bergeron, J., Tremblay, A., Lemieux, I. and Almeras, N., 2008. From individual risk factors and the metabolic syndrome to global cardiometabolic risk. *European Heart Journal Supplements*, 10(suppl_B), pp.B24-B33.

32. Doğan, İ., ESER, B., Özku, S., Yayar, Ö., Özgür, B., Kayadibi, H., Doğan, T., Musmul, A. and Soydan, M., 2018. Serum ADMA, endothelial dysfunction, and atherosclerosis in hypervolemic hemodialysis patients. *Turkish Journal of Medical Sciences*, 48(5), pp.1041-1047.

33. Drobniak, D., Munch, I.C., Glümer, C., Faerch, K., Kessel, L., Larsen, M. and Veiby, N.C., 2016. Retinal vessel diameters and their relationship with cardiovascular risk and all-cause mortality in the Inter99 Eye Study: a 15-year follow-up. *Journal of ophthalmology*, 2016(1), p.6138659.

34. Dymara-Konopka, W. and Laskowska, M., 2019. The role of nitric oxide, ADMA, and homocysteine in the etiopathogenesis of preeclampsia. *International Journal of Molecular Sciences*, 20(11), p.2757.

35. Eastabrook, G., Murray, E., Bedell, S., Miller, M.R., Siu, S. and de Vrijer, B., 2025. Pulse Wave Velocity as a Tool for Cardiometabolic Risk Stratification in Individuals With Hypertensive Disorders of Pregnancy and Increased BMI. *Journal of Obstetrics and Gynaecology Canada*, 47(5), p.102665.

36. Espinoza, J.V.A.P., Vidaeff, A., Pettker, C.M. and Simhan, H., 2019. ACOG practice bulletin no. 202: gestational hypertension and preeclampsia. *Obstet Gynecol*, 133(1), pp.e1-25.

37. Fernández Alba, J. J., Mesa Páez, C., Vilar Sánchez, Á., Soto Pazos, E., González Macías, M. D. C. and Serrano Negro, E. 2018. Overweight and obesity at risk factors for hypertensive states of pregnancy: a retrospective cohort study. *Nutricion Hospitalaria*, 35(4), pp.874-880.

Review Articles

38. Fisher, J.J., Bartho, L.A., Perkins, A.V. and Holland, O.J., 2020. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. *Clinical and Experimental Pharmacology and Physiology*, 47(1), pp.176-184.

39. Flint, E.J., Cerdeira, A.S., Redman, C.W. and Vatish, M., 2019. The role of angiogenic factors in the management of preeclampsia. *Acta obstetricia et gynecologica Scandinavica*, 98(6), pp.700-707.

40. Förstermann, U., 2010. Nitric oxide and oxidative stress in vascular disease. *Pflügers Archiv-European Journal of Physiology*, 459, pp.923-939.

41. Garcia-Ortiz, L., Ramos-Delgado, E., Recio-Rodriguez, J. I., Agudo-Conde, C., Martínez-Salgado, C., Patino-Alonso, M. C., Rodriguez-Sanchez, E., Gomez-Marcos, M. A. and Group, V. R. 2011. Peripheral and central arterial pressure and its relationship to vascular target organ damage in carotid artery, retina and arterial stiffness. Development and validation of a tool. The Vaso risk study. *BMC Public Health*, 11, 1-8.

42. Giarratano, Y., Burke, J., Hamid, C., Magennis, M., Thompson, E., Low, S., Mak, W., Reid-Schachter, M., Yates, E. and Jenks, R. 2024. Exploring Retinal Microvascular Changes as Predictors of Late Pregnancy Complications. *Investigative Ophthalmology & Visual Science*, 65, 5938-5938.

43. Gibbs, S., Govia, R., Cudmore, J., Chisick, L. and Ducas, R., 2023. Preeclampsia: Early and Long-Term Clinical Considerations. In *Biology of Women's Heart Health* (pp. 75-89). Cham: Springer International Publishing.

44. Grzeszczak, K., Łanocha-Arendarczyk, N., Malinowski, W., Ziętek, P. and Kosik-Bogacka, D., 2023. Oxidative stress in pregnancy. *Biomolecules*, 13(12), p.1768.

45. Guerby, P., Tasta, O., Swiader, A., Pont, F., Bujold, E., Parant, O., Vayssiére, C., Salvayre, R. and Negre-Salvayre, A., 2021. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. *Redox biology*, 40, p.101861.

46. Gumus, E., Atalay, M.A., Cetinkaya Demir, B. and Sahin Gunes, E., 2016. Possible role of asymmetric dimethylarginine (ADMA) in prediction of perinatal outcome in preeclampsia and fetal growth retardation related to preeclampsia. *The Journal of Maternal-Fetal & Neonatal Medicine*, 29(23), pp.3806-3811.

47. Guo, X., Xing, Y. and Jin, W., 2023. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. *Frontiers in endocrinology*, 14, p.1183586.

48. Guttormsen, K.A.R.L. and Smith, L.I.S.A., 2016. What is an ankle brachial pressure index?. *Wound Essentials*. UK, 11(1), pp.22-6.

49. Hariharan, N., Shoemaker, A. and Wagner, S., 2017. Pathophysiology of hypertension in preeclampsia. *Microvascular research*, 109, pp.34-37.

50. Herrick EJ, Bordini B., 2020 Embryology, Placenta. *StatPearls Publishing, Treasure Island (FL)*, 1, pp 1-21.

51. Hod, T., Cerdeira, A.S. and Karumanchi, S.A., 2015. Molecular mechanisms of preeclampsia. *Cold Spring Harbor perspectives in medicine*, 5(10), p.a023473.

52. World Health Organization. *Hypertension*. Available at: <https://www.who.int/news-room/fact-sheets/detail/hypertension> (Accessed: February 16, 2023).

Ebenezer Ackah et al.

53. Intapad, S. and Alexander, B.T., 2013. Pregnancy complications and later development of hypertension. *Current cardiovascular risk reports*, 7, pp.183-189.

54. Jikamo, B., Adefris, M., Azale, T. and Alemu, K. 2023. Incidence, trends and risk factors of preeclampsia in sub-Saharan Africa: a systematic review and meta-analysis.

55. Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J. and Pérez-Lebeña, E., 2021. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. *International Journal of Molecular Sciences*, 22(9), p.4642.

56. Kara, M., Yalvaç, E.S., Onat, T., Başer, E., Çaltekin, M.D., Kirmizi, D.A. and Karadağ, M.E., 2021. The effect of placental angiogenic and anti-angiogenic factors on pregnancy outcome in patients with early onset preeclampsia. *Journal of the Turkish German Gynecological Association*, 22(3), p.212.

57. Karrar, S.A. and Hong, P.L., 2022. Preeclampsia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK570611/> (Accessed: 24 June 2024).

58. Kazma, J.M., van den Anker, J., Allegaert, K., Dallmann, A. and Ahmadzia, H.K., 2020. Anatomical and physiological alterations of pregnancy. *Journal of pharmacokinetics and pharmacodynamics*, 47(4), pp.271-285.

59. Khadir, F., Rahimi, Z., Ghanbarpour, A. and Vaisi-Raygani, A., 2022. Nrf2 rs6721961 and Oxidative Stress in Preeclampsia: Association with the Risk of Preeclampsia and Early-Onset Preeclampsia. *International Journal of Molecular and Cellular Medicine*, 11(2), p.127.

60. King, J. and Lowery, D.R., 2019. Physiology, cardiac output. Available from: <https://europepmc.org/article/NBK/nbk470455/> (Accessed: 28 June 2024).

61. Kıziltunç, P. B., Varlı, B., Büyüktepe, T. Ç. Atilla, H. 2020. Ocular vascular changes during pregnancy: an optical coherence tomography angiography study. *Graefe's Archive for Clinical and Experimental Ophthalmology*, 258, 395-401.

62. Kobayashi, T., Ueda, S., Takagi, M., Kihara, M. and Suzuki, Y., 2020. Pathophysiological roles of ADMA-mediated endothelial injury in hypertensive disorders of pregnancy. *Hypertension Research in Pregnancy*, 8(2), pp.40-46.

63. Lancellotti, P., 2023. Focus on cardiometabolic risk factors. *Acta Cardiologica*, 78(5), pp.515-518.

64. Latha, A.P., Haripriya, V. and Ramya Raj, P., 2023. Mid-Trimester Spot Urinary Albumin/Creatinine Ratio as a Screening Tool in Prediction of Pre-Eclampsia. *The Journal of Obstetrics and Gynecology of India*, 73(Suppl 2), pp.234-239.

65. Laurent, S., Rizzoni, D. and Agabiti-Rosei, E., 2024. The cross-talk between the macro-and the microcirculation. In *Early vascular aging (EVA)* (pp. 187-199). Academic Press.

66. Lecarpentier, E., Zsengellér, Z.K., Salahuddin, S., Covarrubias, A.E., Lo, A., Haddad, B., Thadhani, R.I. and Karumanchi, S.A., 2020. Total versus free placental growth factor levels in the pathogenesis of preeclampsia. *Hypertension*, 76(3), pp.875-883.

67. Lee Y, Siddiqui WJ. Cholesterol Levels. 2023 Jul 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. PMID: 3194434.

Review Articles

68. Lößner, C., Multhaup, A., Lehmann, T., Schleußner, E. and Groten, T., 2023. Sonographic Flow-Mediated Dilatation Imaging versus Electronic EndoCheck Flow-Mediated Slowing by VICORDER in Pregnant Women—A Comparison of Two Methods to Evaluate Vascular Function in Pregnancy. *Journal of Clinical Medicine*, 12(5), p.1719.

69. Marfell-Jones, M., Olds, T., Stewart, A. and Lindsay Carter, L.E., 2012. ISAK manual, International standards for Anthropometric Assessment. *International Society for the Advancement of Kinanthropometry*.

70. Marius, R.A., Iliuta, L., Guberna, S.M. and Sinescu, C., 2014. The role of ankle-brachial index for predicting peripheral arterial disease. *Maedica*, 9(3), p.295.

71. McLaughlin, K., Snelgrove, J.W., Audette, M.C., Syed, A., Hobson, S.R., Windrim, R.C., Melamed, N., Carmona, S. and Kingdom, J.C., 2021. PIGF (placental growth factor) testing in clinical practice: evidence from a Canadian tertiary maternity referral center. *Hypertension*, 77(6), pp.2057-2065.

72. Meister, M.L. and Feresin, R.G., 2023. Blackberry consumption protects against e-cigarette-induced vascular oxidative stress in mice. *Food & Function*.

73. Melchiorre, K., Thilaganathan, B., Giorgione, V., Ridder, A., Memmo, A. and Khalil, A., 2020. Hypertensive disorders of pregnancy and future cardiovascular health. *Frontiers in cardiovascular medicine*, 7, p.59.

74. Meng, W., Zhanashunbayeva, Lihua, E., Li, R., 2017. Association between asymmetric dimethylarginine level and preeclampsia: a meta-analysis. *International Journal Clin Exp Med*, 10(6), pp.8720-8727.

75. Mezhal, F., Oulhaj, A., Abdulle, A., AlJunaibi, A., Alnaeemi, A., Ahmad, A., Leinberger-Jabari, A., Al Dhaheri, A.S., AlZaabi, E., Al-Maskari, F. and Alanouti, F., 2023. High prevalence of cardiometabolic risk factors amongst young adults in the United Arab Emirates: the UAE Healthy Future Study. *BMC cardiovascular disorders*, 23(1), p.137.

76. Mo, W., Jin, J., Wang, X., Luan, W., Yan, J. And Long, X., 2023. MicroRNA-206 Contributes to the Progression of Preeclampsia by Suppressing the Viability and Mobility of Trophocytes via the inhibition of AGTR1. *Physiol. Res.*, 72, pp.597-606.

77. Modi, P. and Arsiwalla, T. 2023. Hypertensive retinopathy. StatPearls [Internet]. StatPearls Publishing. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK525980/> (Accessed: 18 September 2024).

78. Moodley J, Soma-Pillay P, Buchmann E, Pattinson RC. Hypertensive disorders in pregnancy: 2019 National guideline. *South African Medical Journal*, 109(9).

79. Moodley, J. and Ngene, N. (2016). Severe hypertension in pregnancy: Using dynamic checklists to save lives. *South African Medical Journal*, 106(8), 767-770. doi:10.7196/SAMJ.2016.v106i8.10908.

80. Motta-Mejia, C., Kandzija, N., Zhang, W., Mhlomi, V., Cerdeira, A.S., Burdujan, A., Tannetta, D., Dragovic, R., Sargent, I.L., Redman, C.W. and Kishore, U., 2017. Placental vesicles carry active endothelial nitric oxide synthase and their activity is reduced in preeclampsia. *Hypertension*, 70(2), pp.372-381.

81. Mousa, M.S.M., Ahmed, A.A.M. and El Omda, F.A.A., 2018. Maternal lipid profile as a risk factor for preeclampsia. *The Egyptian Journal of Hospital Medicine*, 71(6), pp.3434-3438.
82. Nathan, H.L., Seed, P.T., Hezelgrave, N.L., De Greeff, A., Lawley, E., Conti-Ramsden, F., Anthony, J., Steyn, W., Hall, D.R., Chappell, L.C. and Shennan, A.H., 2018. Maternal and perinatal adverse outcomes in women with pre-eclampsia cared for at facility-level in South Africa: a prospective cohort study. *Journal of global health*, 8(2), pp.1 – 10.
83. Nirupama, R., Divyashree, S., Janhavi, P., Muthukumar, S.P. and Ravindra, P.V., 2021. Preeclampsia: Pathophysiology and management. *Journal of Gynecology Obstetrics and Human Reproduction*, 50(2), p.101975.
84. Obstetricians ACo, G., 2013. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' task force on hypertension in pregnancy. *Obstet gynecol*, 122(5), p.1122.
85. Pandey, A.K., Singh, E.K., Arroyo, J.P., Ikizler, T.A., Gould, E.R., Brown, J., Beckman, J.A., Harrison, D.G. and Moslehi, J., 2018. Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. *Hypertension*, 71(2), p. e1-e8.
86. Pérez de la Lastra, J.M., Juan, C.A., Plou, F.J. and Pérez-Lebeña, E., 2022. The nitration of proteins, lipids and DNA by peroxynitrite derivatives-chemistry involved and biological relevance. *Stresses*, 2(1), pp.53-64.
87. Perišić, M.M., Vladimir, K., Karpov, S., Štorga, M., Mostashari, A. and Khanin, R., 2022. Polygenic Risk Score and Risk Factors for Preeclampsia and Gestational Hypertension. *Journal of Personalized Medicine*, 12(11), p.1826.
88. Phan, K., Schiller, I., Dendukuri, N., Gomez, Y.H., Gorgui, J., El-Messidi, A., Gagnon, R. and Daskalopoulou, S.S., 2021. A longitudinal analysis of arterial stiffness and wave reflection in preeclampsia: Identification of changepoints. *Metabolism*, 120, p.154794.
89. Possomato-Vieira, J.S. and Khalil, R.A., 2016. Mechanisms of endothelial dysfunction in hypertensive pregnancy and preeclampsia. *Advances in pharmacology* (Vol. 77, pp. 361-431). Academic Press.
90. Poveda, N.E., Garcés, M.F., Darghan, A.E., Jaimes, S.A.B., Sánchez, E.P., Díaz-Cruz, L.A., Garzón-Olivares, C.D., Parra-Pineda, M.O., Bautista-Charry, A.A., Müller, E.Á. and Alzate, H.F.S., 2018. Triglycerides/glucose and triglyceride/high-density lipoprotein cholesterol indices in normal and preeclamptic pregnancies: A longitudinal study. *International journal of endocrinology*, 2018(1), p.8956404.
91. Qin, Q., Chen, C. and Cugati, S., 2020. Ophthalmic associations in pregnancy. *Australian journal of general practice*, 49(10), pp.673-680.
92. Rana, S., Burke, S.D. and Karumanchi, S.A., 2022. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. *American journal of obstetrics and gynecology*, 226(2), pp.S1019-S1034.
93. Rana, S., Lemoine, E., Granger, J.P. and Karumanchi, S.A., 2019. Preeclampsia: pathophysiology, challenges, and perspectives. *Circulation research*, 124(7), pp.1094-1112.
94. Redza-Dutordoir, M. and Averill-Bates, D.A., 2016. Activation of apoptosis signalling pathways by reactive oxygen

species. *Biochimica et Biophysica Acta (BBA)-Molecular Cell Research*, 1863(12), pp.2977-2992.

95. Rizzoni, D., Agabiti-Rosei, C., Boari, G.E., Muiesan, M.L. and De Ciuceis, C., 2023. Microcirculation in hypertension: a therapeutic target to prevent cardiovascular disease?. *Journal of Clinical Medicine*, 12(15), p.4892.
96. San Juan-Reyes, S., Gómez-Oliván, L.M., Islas-Flores, H. and Dublán-García, O., 2020. Oxidative stress in pregnancy complicated by preeclampsia. *Archives of biochemistry and biophysics*, 681, p.108255.
97. Sánchez-Aranguren, L.C., Prada, C.E., Riaño-Medina, C.E. and Lopez, M., 2014. Endothelial dysfunction and preeclampsia: role of oxidative stress. *Frontiers in physiology*, 5, p.372.
98. Sani, H.M., Vahed, S.Z. and Ardalan, M., 2019. Preeclampsia: a close look at renal dysfunction. *Biomedicine & pharmacotherapy*, 109, pp.408-416.
99. Scioli, M.G., Storti, G., D'Amico, F., Rodríguez Guzmán, R., Centofanti, F., Doldo, E., Céspedes Miranda, E.M. and Orlandi, A., 2020. Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction: potential diagnostic biomarkers and therapeutic targets. *Journal of clinical medicine*, 9(6), p.1995.
100. Selanno, J.F., Riu, D.S., Tessy, T., Chalid, M.T., Pelupessy, N.U. and Hartono, E., 2020. Maternal serum levels of asymmetric dimethylarginine in normal and preeclamptic pregnancies. *Gynecological Endocrinology*, 36(8), pp.702-704.
101. Shahoud, J.S. and Aeddula, N.R., 2019. Physiology, Arterial Pressure Regulation. In StatPearls [Internet]. StatPearls Publishing. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK538509/> (Accessed: 28 June 2024).
102. Shaito, A., Aramouni, K., Assaf, R., Parenti, A., Orekhov, A., El Yazbi, A., Pintus, G. and Eid, A.H., 2022. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases.
103. Shaito, A., Aramouni, K., Assaf, R., Parenti, A., Orekhov, A., El Yazbi, A., Pintus, G. and Eid, A.H., 2022. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. *Front. Biosci. (Landmark Ed)* 27(3), p.105.
104. Shechter, M., Shechter, A., Koren-Morag, N., Feinberg, M.S. and Hiersch, L., 2014. Usefulness of brachial artery flow-mediated dilation to predict long-term cardiovascular events in subjects without heart disease. *The American journal of cardiology*, 113(1), pp.162-167.
105. Soma-Pillay, P., Catherine, N.P., Tolppanen, H., Mebazaa, A., Tolppanen, H. and Mebazaa, A., 2016. Physiological changes in pregnancy. *Cardiovascular journal of Africa*, 27(2), p.89.
106. Spradley, F.T., Palei, A.C. and Granger, J.P., 2015. Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, 309(11), pp.R1326-R1343.
107. Stanford Medicine (2019). Fundoscopic (Ophthalmoscopic) Exam. [online] Stanford Medicine 25. Available at: <https://stanfordmedicine25.stanford.edu/the25/fundoscopic.html> (Accessed: 18 September 2024).

Ebenezer Ackah et al.

108. Stoner, L., Stone, K., Zieff, G., Blackwell, J., Diana, J., Credeur, D.P., Paterson, C. and Fryer, S., 2020. Endothelium function dependence of acute changes in pulse wave velocity and flow-mediated slowing. *Vascular Medicine*, 25(5), pp.419-426.

109. Tashie, W., Fondjo, L.A., Owiredu, W.K., Ephraim, R.K., Asare, L., Adu-Gyamfi, E.A. and Seidu, L., 2020. Altered bioavailability of nitric oxide and L-arginine is a key determinant of endothelial dysfunction in preeclampsia. *BioMed Research International*, 2020, pp.1-9.

110. Tenório, M.B., Ferreira, R.C., Moura, F.A., Bueno, N.B., de Oliveira, A.C.M. and Goulart, M.O.F., 2019. Cross-talk between oxidative stress and inflammation in preeclampsia. *Oxidative Medicine and Cellular Longevity*.

111. Tianfan, Z.H.O.U., Feixue, S.H.A.O., Sheng, W.A.N., Chenchen, Z.H.O.U., Sijin, Z.H.O.U. and Xiaolin, H.U.A., 2024. Feasibility study on quantifying retinal vascular features for predicting preeclampsia based on artificial intelligence models. *Journal of Shanghai Jiao Tong University (Medical Science)*, 44(5), pp.552-559.

112. Tobing, I.D., Lumbanraja, S.N., Lintang, L.S., Edwar, R.R., Adenin, I., Lubis, M.P., Sukatendel, K. and Suarthana, E., 2024. Predictive biomarkers of preeclampsia severity in a low resource setting: Role of red blood cell indices, NLR, and albumin-to-creatinine ratio. *Narra J*, 4(2), p.e729.

113. Tobała-Wróbel, K., Pietryga, M., Dydowicz, P., Napierała, M., Brązert, J. and Florek, E., 2020. Association of oxidative stress on pregnancy. *Oxidative medicine and cellular longevity*, 2020(1), p.6398520.

114. Tooher, J., Thornton, C., Makris, A., Ogle, R., Korda, A. and Hennessy, A., 2017. All hypertensive disorders of pregnancy increase the risk of future cardiovascular disease. *Hypertension*, 70(4), pp.798-803.

115. Torrado, J., Farro, I., Zócalo, Y., Farro, F., Sosa, C., Scasso, S., Alonso, J. and Bia, D., 2015. Preeclampsia is associated with increased central aortic pressure, elastic arteries stiffness and wave reflections, and resting and recruitable endothelial dysfunction. *International journal of hypertension*, 2015(1), p.720683.

116. Townsend, R.R., Wilkinson, I.B., Schiffrin, E.L., Avolio, A.P., Chirinos, J.A., Cockcroft, J.R., Heffernan, K.S., Lakatta, E.G., McEnery, C.M., Mitchell, G.F. and Najjar, S.S., 2015.

Review Articles

Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. *Hypertension*, 66(3), pp.698-722.

117. Turco, M.Y. and Moffett, A., 2019. Development of the human placenta. *Development*, 146(22), pp.1-14.

118. Upadhye, M., Tolat, A., Karambelkar, T., Tikalkar, A., Mulgund, S., Pawar, R., Chaudhari, R., Abhang, S., 2018. Interplay between the Levels of Asymmetric Dimethylarginine and Nitric Oxide in Preeclampsia. *International Journal of Current Research and Review*, 10(8), pp.20-24.

119. Van Bortel, L.M., Laurent, S., Boutouyrie, P., Chowienczyk, P., Cruickshank, J.K., De Backer, T., Filipovsky, J., Huybrechts, S., Mattace-Raso, F.U., Protogerou, A.D. and Schillaci, G., 2012. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. *Journal of hypertension*, 30(3), pp.445-448.

120. Viana-Mattioli, S., Fonseca-Alaniz, M.H., Pinheiro-de-Sousa, I., Krieger, J.E. and Sandrim, V.C., 2023. Missing links in preeclampsia cell model systems of endothelial dysfunction. *Trends in Molecular Medicine*.

121. von Hanno, T., Bertelsen, G., Sjølie, A.K. and Mathiesen, E.B., 2014. Retinal vascular calibres are significantly associated with cardiovascular risk factors: the Tromsø Eye Study. *Acta ophthalmologica*, 92(1), pp.40-46.

122. Wang, Z., Zhan, M., Li, W., Chu, C., Xing, D., Lu, S. and Hu, X., 2021. Photoacoustic cavitation-ignited reactive oxygen species to amplify peroxy nitrite burst by photosensitization-free polymeric nanocapsules. *Angewandte Chemie International Edition*, 60(9), pp.4720-4731.

123. Wu, S., Jin, C., Li, S., Zheng, X., Zhang, X., Cui, L. and Gao, X., 2019. Aging, arterial stiffness, and blood pressure association in Chinese adults. *Hypertension*, 73(4), pp.893-899.

124. Yeasmin, N., Akhter, Q.S., Mahmuda, S., Nahar, S., Abira, M., Rahman, F., Habib, T.B., Hasan, M. and Yeasmin, S., 2019. Association of serum triglycerides and total cholesterol levels with hypertension in adult female. *Bangladesh Critical Care Journal*, 7(1), pp.35-39.

125. Zhang, L., Liu, J., Feng, X. and Lash, G.E., 2023. Unraveling the mysteries of spiral artery remodeling. *Placenta*, 141, pp.51-56.